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We propose a simple set-theoretic model of a generalized probability space
admitting intrinsic incompatible events and incompatible observables. It is a
coproduct in the category $ of D-posets and D-homomorphisms each factor of
which is a classical Kolmogorovian probability space. Since classical events,
random functions, and probability measures can be treated within $ in a canonical
way, the Kolmogorovian model becomes a special case. We show that s-additivity
and other s-notions can be replaced in a natural way by sequential continuity.

1. INTRODUCTION

Example 1.1. Let (V , A, p) be a probability space and let f : V → R be
a random variable. Each elementary event v P V represents an “atomic
realization of a random experiment” and f(v) is the real number assigned to
v in the corresponding measurement. Further, for each Borel set B of real
numbers, f ←(B) is the set of all elementary events for which the measurement
terminates in B and p( f ←(B)) is its probability.

Now, assume that we start with a larger set X carrying a s-ring S of
its subsets, a measurable map g: X → R, and a (finite) measure m such that
V , X, A , S 0 , m(V), and for each A P A we have p(A) 5 m(A)/m(V).
Even though m need not be a probability, we can view (V , A, p) and f 5
g.V as a partial experiment in a broader setting represented by (X, S, m),
where V and A are certain limitations (restrictions) imposed for some reasons
on the experiment and the corresponding measurement, and m is a “gauge.”

Of course, we can consider families {(Vt , At , pt); t P T}, { ft 5 g . Vt;
t P T} of such partial experiments within the same (X, S, m). Then events
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belonging to different At and different random variables ft need not be “com-
patible.” Indeed, it can even happen that a certain event A belongs to As and
At for s, t P T, s Þ t, and ps (A) Þ pt(A).

Motivated by this model situation, we propose generalizations of the
notions of a probability space and a random function.

Observation 1.2. Example 1.1 allows for various modifications and
ramifications. For example:

(i) The measure m can be infinite. Then, if m(V) is infinite, we have
to define p(A) 5 0 whenever m(A) is finite, and otherwise define
p(A) in some consistent way.

(ii) If V Þ 0⁄ and m(V) 5 0, still p and m can be related in some
consistent way.

(iii) The family Vt , t P T, can have some semilattice property.
(iv) The family {At; t P T} can be specified more explicitly, e.g.,

At 5 {A ù Vt.A P S}.

Example 1.1 can be analyzed within the theory of quantum logics (cf.
Pták and Pulmannová, 1991). In fact, we shall proceed this way, but we will
restrict ourselves to rather simple quantum logics and we will use the apparatus
of D-posets.

First, each (Vt , At , pt) is a classical original probability space and ft is
a classical random variable. In this way we split up our initial experiment
into a family of incompatible experiments and we study each of them within
the classical Kolmogorovian probability theory. Second, according to Kôpka
and Chovanec (1994), events, observables, and probability measures can be
described within the category $ so that At becomes a D-poset and f ←

t and
pt become D-homomorphisms. Third, we paste the family {(Vt , At , pt); t
P T} as a coproduct. This yields a simple generalization of the classical
Kolmogorovian model.

Recall that a D-poset is a quintuple (X, %X , *X , OX , lX), where X is a
set, %X is a partial order on X, 0X is the least element, lX is the greatest
element, *X is a partial operation on X such that a *X b is defined iff b %X

a, and the following axioms are assumed:

(D1) a *X OX 5 a for each a P X
(D2) If c %X b %X a, then a *X b %X a *X c and (a *X c) *X (a *X

b) 5 b *X c.

If no confusion arises, the quintuple (X, %X , *X , 0X , 1X) is condensed to X;
sometimes the index denoting the underlying set is omitted.

A map h on a D-poset X into a D-poset Y which preserves the D-poset
structure is said to be a D-homomorphism. In addition, if h preserves all
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existing suprema of nondecreasing sequences in X, then h is said to be a s-
D-homomorphism. As observed by F. Chovanec and F. Kôpka, for Boolean
algebras D-homomorphisms and Boolean homomorphisms coincide. A s-D-
homomorphism of the s-field of all Borel sets of the real line R into a D-
poset Y is called an observable on Y, and a s-D-homomorphism of a D-poset
Y into the interval [0, 1] (carrying the usual difference and order) is called
a state on Y.

2. D-SUM AND $-COPRODUCT

Let {Xt; t P T} be a family of sets. We do not exclude the case when
each Xt is a fixed set, e.g., the real line, or a subset of a given set X. Sometimes
we need to treat the sets Xt as mutually disjoint. Then the elements of Xt will
be denoted by (x, t) and hence s Þ t implies (x, s) Þ (x, t); Xt will be replaced
by X(t). In some cases we simply assume that Xx ù Xt 5 0⁄ whenever s Þ t.

Let V be a set and let A be a field of its subsets carrying the usual
partial order (inclusion) and set operations. Clearly, (V , A) can be considered
as a D-poset (A, #, *A, 0⁄ , V) where the partial operation *A is defined as
follows: for A, B P A, A *A B is defined iff A $ B and then we put A *A

B 5 A \B.
Let f be a measurable map of a field (V1, A1) into a field (V2, A2).

Clearly, f ←: A2 → A1 is a D-homomorphism of (A2, #, *A2, 0⁄ , V2) into (A1,
#, *A1, 0⁄ , V1).

Construction 2.1. Let {(Vt , At); t P T} be a family of fields of sets.
For each t P T, let V(t) 5 Vt 3 {t}, let A(t) 5 {{(v, t) P V(t).v P A}.
A P At}; then (Vt , At) and (V(t), A(t)) are isomorphic and V(s) ù V(t) 5
0⁄ whenever s, t P T, s Þ t. Let V 5 øtPTV(t), let S(t) 5 {A P A(t).A Þ
0⁄ , A Þ V(t)}, and let S 5 {0⁄ , V} ø (øtPTS(t). Define a partial operation
*S on S, partially ordered by inclusion, as follows: For A, B P S, A *S B
is defined iff A $ B and then:

(i) Put V *S V 5 0⁄ , V *S 0⁄ 5 V , and 0⁄ *S 0⁄ 5 0⁄ .
(ii) For each A P S(t), t P T, put V *S A 5 Vt \A and A *S 0⁄ 5 A.

(iii) For A, B P S(t), A $ B, t P T, put A *S B 5 A \B.

For each t P T, define a map kt: At → S as follows: kt(Vt) 5 V and, for
A Þ Vt , put kt(A) 5 {(v, t) P V(t).v P A}.

Proposition 2.2. Let {(Vt , At); t P T} be a family of fields of sets.
Then (S, #, *S, 0⁄ , V) is a D-poset. For each t P T, kt is an D-isomorphism
onto a D-poset subspace of (S, #, *S, 0⁄ , V).

Proof. The straightforward calculations are omitted.
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Definition 2.3. We shall call (S, #, *S, 0⁄ , V) the D-sum of {(Vt , At);
t P T}; it will be denoted by DtPT(Vt , At). Maps kt: At → S, t P T, are
called coprojections.

Observe that S is in fact the horizontal sum of its almost disjoint
subspaces kt(At), t P T (Dvurečenskij, 1993). We claim that DtPT(Vt , At) is
the coproduct in the category of D-posets and D-homomorphisms and hence
it has some useful properties.

Let {(Xt , %t , *t , 0t , 1t); t P T} be a family of D-posets. Recall that a
D-poset (X, %X , *X , 0X , 1X) together with D-homomorphisms {kt: Xt → X;
t P T}, called coprojections, is the coproduct of {(Xt , %t , *t , 0t , 1t); t P
T} if, whenever (U, %U , *U , 0U , 1U) is a D-poset and {wt: Xt → U; t P T}
are D-homomorphisms, then there is a unique D-morphism F: X → U such
that F + kt 5 wt for each t P T.

Construction 2.4. For each t P T, let (Xt , %t , *t , 0t , 1t) be a D-poset,
let Yt 5 {(x, t).x Þ 0t , x Þ 1t}, and let Y 5 {0, 1} ø (øtPTYt). Define a
relation % on Y as follows:

(i) 0 % y % 1 for each y P Y.
(ii) v % u whenever u 5 (x, t), v 5 ( y, t) for some t P T and y %t x.

Clearly, % is a partial order, 0 is the least element in Y, and 1 is the greatest
element in Y. Define a partial operation * on Y as follows: x * y is defined
iff y % x and then:

(iii) Put 1 * 1 5 0, 1 * 0 5 1, 0 * 0 5 0.
(iv) For each (x, t) P Yt , t P T, put 1 * (x, t) 5 (1t , *t , x, t) and (x,

t) * 0 5 (x, t).
(v) For each (x, t), ( y, t) P Yt , y %t x, t P T, put (x, t) P ( y, t) 5 0

whenever x 5 y and (x, t) * ( y, t) 5 (x, *t y, t) otherwise.

For each t P T, define a map kt: Xt → Y as follows: kt(0t) 5 0, kt(1t) 5 1,
and, for x Þ 0t , x Þ 1t , put kt(x) 5 (x, t).

The proofs of the next two assertions are straightforward and are omitted.

Proposition 2.5. Let {(Xt , %t , *t , 0t , 1t); t P T} be a family of D-
posets. Then (Y, %, *, 0, 1) is a D-poset and, for each t P T, kt is a D-
isomorphism of (Xt , %t , *t , 0t , 1t) onto a D-poset subspace of (Y, %, *, 0, 1).

Corollary 2.6. Let {(Xt , %t , *t , 0t , 1t); t P T} be a family of D-posets.
Then (Y, %, *, 0, 1) together with {kt; t P T} is its coproduct. In particular,
if {(Vt , At); t P T} is a family of fields of sets, then DtPT(Vt , At) together
with {kt; t P T} is its coproduct.
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Definition 2.7. Let {(Xt , %t , *t , 1t); t P T} be a family of D-posets
and let (Y, %, *, 0, 1) together with {kt; t P T} be its coproduct. Let C be
a D-morphism of (Y, %, *, 0, 1) into a D-poset (U, %U , *U , 0U , 1U). Then
{C + kt; t P T} is said to be the spectrum of C.

Construction 2.8. Let {(Vt , At , pt); t P T} be a family of probability
spaces. Let P be the unique D-homomorphism of (S, #, *S, 0⁄ , V) 5 DtPT (Vt ,
At) into [0, 1] such that P + kt 5 pt , t P T. Denote by (D, #, *D, 0⁄ , D) the
D-sum DtPT(Rt , Bt) in which each factor is the real line R carrying the s-
field B of Borel sets. Let {ft: Bt → D; t P T} be the corresponding
coprojections. For each t P T, let ft be a random variable on (Vt , At , pt).
This yields a map f of V 5 øtPTV(t) into D 5 øtPTR(t) defined by
f (v, t) 5 ( ft(v), t), v P Vt , t P T. For each t P T, the preimage f ←

t of ft is
a (sequentially continuous) Boolean homomorphism and hence a D-homo-
morphism of Bt into At. The family { f ←

t ; t P T} yields a generalized preimage
f ¹ of f which maps D into S. Indeed, let M P D. Then there are t P T and
B P Bt such that M 5 ft(B). Define f ¹(M ) 5 kt( f ←

t (B)). Then f ¹ is well-
defined and maps M into the smallest element of S containing the subset
f ←

t (B) of V . Observe that f ¹(M ) 5 V iff f ←
t (B) 5 Vt. It is a D-homomorphism

of DtPT(Rt , Bt) into DtPT(Vt , At). We shall show that both DtPT(Vt , At) and
DtPT(Rt , Bt) can be equipped with a canonical sequential convergence such
that P, f ¹, and hence P + f ¹ become sequentially continuous.

Our probability model consists of DtPT (Vt , At) as a generalized field of
events, P as a generalized probability, f as a generalized random variable,
and f ¹ as a generalized observable. We shall show that s-additivity and other
s-notions can be replaced in a natural way by sequential continuity.

Due to the fact that S 5 DtPT (Vt , At) is a coproduct in $, it is possible
first to study “factors” (Vt , At , pt) and ft within $ and then to “paste” the
corresponding results to get results concerning S, P, and f.

Observation 2.9. Observe that if V(t) is partitioned into disjoint hypothe-
ses, then for events in S(s), s Þ t, the total probability rule and the Bayes
formula do not hold. Hence our model has a quantum nature. The famous
two-slit experiment can be accommodated into the model, e.g., as follows.
Starting with (X, S, m), let (Vi , Ai , pi), i 5 1,2, represent the experiment
when on the first screen only the first, resp. the second, slit is open. Let (V3,
A3, p3) represent the experiment when both slits are open. For V1 ù V2 5
0⁄ , V1 ø V2 ,

Þ
V3, V1 ¸ A3, V2 ¸ A3, let P(Y ) 5 p3(Y ù V3) be the probabil-

ity of hitting a region Y on the second screen, let P(Y.i) 5 pi (Y ù Vi)/pi (Vi)
be the probability of hitting Y when only the slit i is open, i 5 1, 2. Clearly,
in general, P(Y ) 5 p3(Y ) and P(Y.1) 1 P(Y.2) 5 p1(Y ù V1) 1 p2(Y ù V2)
can differ (Accardi, n.d.).
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3. SEQUENTIAL CONTINUITY

In this section we introduce a new category, DS. We claim that DS is
a suitable category for the study of observables and probabilities within the
Kolmogorovian model and the results can be extended in a natural way via
D-sums to the generalized observables and probabilities.

From the viewpoint of category theory, a probability measure fails to
be a morphism, i.e., a map “preserving the structure.” As pointed out by F.
Chovanec and F. Kôpka, this formal shortcoming disappears within the realm
of D-posets. A probability measure on a s-field of sets is a s-D-homomor-
phism into [0, 1]. We claim that it is natural to consider both observables
and probability measures as sequentially continuous D-homomorphisms.

Clearly, D-posets and D-homomorphisms form a concrete category $.
Not to destroy completeness and cocompleteness of the categories to be dealt
with, we do not exclude from our considerations the D-poset for which 0 5
1 and likewise the field of sets for which the underlying set is empty. To
avoid pathologies, we always assume that all fields of sets are reduced. Each
field of sets (V , A) carries a natural D-poset structure and a sequential
convergence: ^An& converges to A in A iff A 5 ù`

k51 ø`
n5k An 5

ø`
k51 ù`

n5k An. It is easy to see that such D-posets together with sequentially
continuous D-homomorphisms form a subcategory of $; denote it by DS.
Since for fields of sets, D-homomorphisms and Boolean homomorphisms
coincide, DS is isomorphic to the category FS of fields of sets and sequentially
continuous Boolean homomorphisms studied in Frič (1997, 1999).

Observation 3.1. Let SCFS be the subcategory of FS consisting of s-
fields of sets and let SCDS be the subcategory of DS consisting of s-D-
posets (A, #, *A, 0⁄ , V) such that (V , A) is a s-field. Since SCFS is
epireflective in FS (Frič, 1997), also SCDS is epireflective in DS. In particular,
this means that each sequentially continuous D-homomorphism between
fields of sets can be uniquely extended to a sequentially continuous D-
homomorphism between the generated s-fields.

Lemma 3.2. Let (V , A) be a field of sets, let (A, #, *A, 0⁄ , V) be the
corresponding D-poset, and let p be a probability measure on A. Then p is
a sequentially continuous D-homomorphism of A into [0, 1].

Proof. The assertion follows from the fact that each bounded s-additive
measure on a ring of sets is sequentially continuous (Novák, 1958).

Recall that a field A of subsets of V is s-perfect if each maximal filter
of sets in A having the CIP (countable intersection property) is generated
by a point or, equivalently, each sequentially continuous Boolean homomor-
phism of A into the two-element Boolean algebra is generated by a point.
Each perfect field is s-perfect, but the converse does not hold.
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Lemma 3.3. For i 5 1, 2, let (Vi , Ai) be a s-field of sets and let (Ai ,
#, *Ai, 0⁄ , Vi) be the corresponding s-D-poset.

(i) Let f be a measurable map of (V2, A2) into (V1, A1). Then f ← is a
s-D-homomorphism of (A1, #, *A1, 0⁄ , V1) into (A2, #, *A2, 0⁄ , V2).

(ii) Let h be a s-D-homomorphism of A1 into A2. Then h is a sequentially
continuous Boolean homomorphism of (V1, A1) into (V2, A2). If A is s-
perfect, then there is a unique measurable map f of (V2, A2) into (V1, A1)
such that h 5 f ←.

Proof. (i) Clearly, f ← is a D-homomorphism. A straightforward calcula-
tion shows (cf. Proposition 2.6 in Frič, 1999) that f ← is sequentially continu-
ous. If ^An& is a nondecreasing sequence in A1, then ^An& converges to
ø`

n51 An and hence f ← (ø`
n51 An) 5 ø`

n51 f ←(An). Hence f ← is a s-D-
homomorphism.

(ii) Since h is a Boolean homomorphism of A1 into A2, it suffices to
prove that h is sequentially continuous. First, let ^Mn& be a monotone sequence
in A1 converging to M. Then either ^Mn& or ^V1 *A1 Mn& is nondecreasing.
Since h is a s-D-homomorphism, necessarily ^h(Mn)& converges to h(M ).
Second, let ^An& be an arbitrary sequence in A1 converging to A. We are to
prove that the sequence ^h(An)& converges in A2 to h(A), i.e., h(A) 5
ù`

k51 ø`
n5k h(An) 5 ø`

n51 ù`
n5k h(An). For k, l P N, put Bkl 5 øk211l

n5k An and
Ckl 5 øk211l

n5k An. For fixed k, ^Bkl& and ^Ckl& are monotone sequences converg-
ing in A1 to Bk 5 ø`

n5k An and Ck 5 ù`
n5k An, respectively. But h(Bkl) 5

øk211l
n5k h(An) and h(Ckl) 5 ùk211l

n5k h(An) and hence h(Bk) 5 ø`
n5k h(An) and

h(Ck) 5 ù`
n5k h(An). Finally, from h(ùn

k51 Bk) 5 ùn
k51 h(Bn) and

h(øn
k51 Ck) 5 øn

k51 h(Ck) it follows that h(A) 5 ù`
k51 ø`

n5k h(An) 5
ø`

k51 ù`
n5k h(An). The last assertion is now exactly (ii) of Proposition 2.6 in

Frič (1999). This completes the proof.

Example 3.4. Consider the minimal field B0 of subsets of R generated
by all intervals of the form [a, `), a P R, and the generated s-field B of all
Borel subsets of R. Denote by d0, the Dirac measure concentrated at 0,
i.e., d0(A) 5 1 if 0 P A and d0(A) 5 0 if 0 ¸ A, A P B. Then [1/n, 1) ,
[1/(n 1 1), 1) for each n P N and [0, 1) 5 ∨`

n51 [1/n, 1) in B0, while (0, 1)
5 ∨`

n51 [1/n, 1) in B. Consequently, while d0 is a s-D-homomorphism of B
into [0, 1] (or into the two-element field of sets {0⁄ , V}), d0 restricted to B0

fails to be a s-D-homomorphism since d0([0, 1)) 5 1 and d0([1/n, 1)) 5 0.
Observe that d0 is sequentially continuous both on B0 and on B.

Construction 3.5. Let {(Vt , At); t P T} be a family of fields of sets,
let (S, #, *S , 0⁄ , V) 5 DtPT (Vt , At), and let {kt: At → S; t P T} be the
corresponding coprojections. Define a sequential convergence on S as fol-
lows: a sequence ^An& converges to A iff there exist t P T, B P At , and a
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sequence ^Bn& in At converging to B such that kt(B) 5 A and kt(Bn) 5 An

for all but finitely many n P N. Clearly, it is the finest sequential convergence
on S, satisfying the Urysohn axiom of convergence, such that all kt , t P T,
are sequentially continuous. It will be called the fine convergence and, in
what follows, sequential continuity in a D-sum is always with respect to the
fine convergence.

Proposition 3.6. Let {(Xt , Ut); t P T}, {(Yt , Vt); t P T} be two families
of fields of sets and let {ht: Ut → Vt; t P T} be a family of sequentially
continuous D-homomorphisms. Let (U, #, *U, 0⁄ , U ) 5 DtPT(Xt , Ut), (V, #,
*V, 0⁄ , V ) 5 DtPT(Yt , Vt) and let {wt: Ut → U; t P T}, {ct: Vt , → V; t P
T} be the corresponding coprojections. Assume that each Ut , t P T, is
s-perfect.

(i) There exists a unique D-homomorphism h: U → V such that h +
wt 5 ct + ht.

(ii) There exists a unique map f : Y → X such that f ¹ 5 h.
(iii) h is sequentially continuous.

Proof. (i) follows from the fact that U together with {wt: Ut → U; t P
T} is the coproduct of {(Xt , Ut); t P T}.

(ii) follows from the fact that for each t P T, there exists a unique
measurable map ft of (Yt , Vt) into (Xt , Ut) such that f ←

t 5 ht (cf. Proposition
2.6 in Frič, 1999), the construction of a D-sum, and the construction of the
generalized preimage f ¹ of f.

(iii) is straightforward. This completes the proof.

Denote by MM the category objects of which are fields of sets and
morphisms of which are measurable maps. The most important result about
s-perfectness is that the subcategory SPMM consisting of s-perfect objects
in MM and the subcategory SPFS consisting of s-perfect objects in FS are
dually isomorphic (Frič, 1999). Since each measurable map f induces a
sequentially continuous Boolean homomorphism f ←, the duality means that,
for s-perfect fields of sets, each sequentially continuous Boolean homomor-
phism is induced by a measurable map. In fact, it suffices that the domain
of the homomorphism is s-perfect. Further, s-perfectness is preserved under
the products of fields of sets and the generation of s-field. Since B0 is s-
perfect, for each power RT the field BT of all Borel sets in RT is s-perfect,
too. Thus each sequentially continuous Boolean homomorphism of (RT, BT)
into a s-field of sets (V , A) is induced by a measurable map of (V , A) into
(RT, BT).

Proposition 3.7. The categories DS and SPMM are dual.
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Proof. Recall that DS and FS are isomorphic categories. Our proof is
based on the following facts from Frič (1999).

(i) SPFS and SPMM are dually isomorphic (cf. Proposition 3.2 in Frič,
1999), hence it suffices to show that FS and SPFS are equivalent categories.

(ii) Let (V , A) be a field of sets. Then there exists a unique s-perfect
field of sets (V*, A*) such that V # V*, A 5 {A ù V.A P A*}, and a
natural isomorphism h sending A P A* to A ù V such that both h and h21

are sequentially continuous.
(iii) Putting F((V , A)) 5 (V*, A*), we get a (bireflective) functor F:

FS → SPFS.
(iv) F is a left adjoint to the inclusion functor G: SPFS → FS and the

adjunction is an equivalence (both the unit and the counit of the adjunction
are isomorphisms). This completes the proof.

SUMMARY

Since each probability measure on a field of sets A is sequentially
continuous and can be extended to a probability measure on the generated
s-field s(A), it follows from the assertions proved in this section that it is
natural to consider each probability measure as a sequentially continuous D-
homomorphism of a field of sets into [0, 1] and to consider each observable
as a sequentially continuous D-homomorphism between fields of sets. Let
{(Vt , At , pt); t P T} be a family of classical probability spaces. For each
t P T, there is a one-to-one correspondence between random functions
Ft 5 { f(t,u): (Vt , At) → (R, B).u P Ut} and (multidimensional) observables
ht: BUt → At as sequentially continuous D-homomorphisms or, equivalently,
as sequentially continuous Boolean homomorphisms. Passing to the corres-
ponding D-sums, we get a one-to-one correspondence between generalized
random functions as point maps F (represented by families {Ft; t P T}) of
the underlying set of DtPT(Vt , At) and generalized observables F¹ (represented
by families {F←

t ; t P T}) as sequentially continuous D-homomorphisms of
DtPT (R, B)Ut into DtPT (Vt , At). There is a unique sequentially continuous D-
homomorphism P of DtPT (Vt , At) into [0, 1] such that {pt; t P T} is the
spectrum of P. Compatibility of events and random functions means that they
are “located” in the same (Vt , At).

In a forthcoming paper we shall develop a categorical approach to
classical random variables and functions. The results will be applied to
generalized random variables via D-sums.
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